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Short summary

2

R∞(X; Y ) := min
U (max

a
(U†XU − Y)a )

To determine the slow mode in a high-dim space, we compute a quantity

which can be translated into an optimization problem.

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider 
their extensions to solve this problem numerically.

 :  hermitian mat.   
 : unitary mat.

X, Y N × N

U

( )XI = ⋱

ℝ(#matrix dof)YI,a

Via gauge/gravity duality, how can we obtain geometric data from QFT side? 
→ the slow mode plays an essential role 
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Gauge/gravity duality
A conjecture from 2 descriptions of D-branes in string theory;

D-branes & string

Theory of closed strings 
in D-brane geometry

Effective theory of  
open strings on branes

QFT 
(Super Yang-Mills theory) GR in curved spacetime

∫ dp+1x tr ( 1
4 F 2

μν + 1
2 (DμXI)2 + g2

4 [XI, XJ]2 + (fermion terms))
 :  hermitian matrices,  to satisfy the dualityXI(x) N × N N ≫ 1

[Maldacena (’97) / Gubser, Klebanov, Polyakov, (’98) / Witten, (’98)] 
[Itzhaki, Maldacena, Sonnenschein, Yankielowicz, (’98)]

: (p+1)-d SU(N) SYM
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Position of D-branes & open strings

[Witten, (’95)]

diagonal : position of D-branes 
off-diagonal : open string fluctuations among D-branes( )XI = ⋱

For some special cases (e.g., 4d  SYM) → X : simultaneously diagonal ' = 4

XI = YI + X̃I = (slow mode) + (fast mode)
[Polchinski, (’98, ’99) / Susskind, (’99) / Hanada (’21)]

Key : Separation of the classical mode and fluctuation around it
In a more generic case,

(One realization of slow mode : the center of wave packet in the matrix space)

tr [YI, XJ]2 = ∑
i, j

(YI XJ − XIYJ)ij(YI XJ − XIYJ) ji ⊃ − (yi
I − y j

I)
2 | X̃ij

I |2

 Suppose ,∵ ) XI = YI + X̃I, Y = diag(y1, ⋯, yN)

And remember (open string mass) = (string tension) ⨉ (string length). 

∼ O(N−1)

How to identify the slow mode for generic theory?
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Determination of slow mode
How to identify the slow mode for generic theory?

[Hanada, Kanno, Matsuura, HW, in progress]

R∞(X; Y (trial)) := min
U (max

I,a (X(U)
I − Y (trial)

I )a )
• Prepare , and find a unitary matrix  minimizing  with given .{XI} U R∞ Y (trial)

I

• Vary  in order to search . 

• Repeat above for different , and take the average since  is gauge invariant

Y (trial)
I min

Y
R∞(X, Y )

XI ⟨R∞(X, Ymin)⟩

Our proposal (in path-integral formalism)

: -distance  
 or Chebyshev distance

L∞

: A variational approach

Determine a specific configuration (= a point in matrix space)

: works for theories undefined in Hamiltonian formalism (e.g., matrix model)

c.f. [Hanada, (’21)] for a proposal in Hamiltonian formalism

YI,a

…

corresponds to the searching of  along the gauge orbitY
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MCMC & minimization

P(x) ∝ e−F(x)

• Markov-chain Monte Carlo method enable us to generate the probability density  
 with a “potential” .P(x) F(x)

• This algorithm is powerful not only for performing integrals (e.g., lattice QCD)  
but also to search the minima of .F(x)

F(x)

xi

❌  hard

F(x)

xi
xtrial

i

✔ easy

xmin
i

x(0) → x(1) → x(2) → ⋯ → x(Ns)

→concept of annealing which introduce a “temperature”
8

- The difficulty depends on the structure of minima for . (: Ergodicity ) 
(It always gives correct answers if we have an INFINITE computing resource!)

F(x)
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Simulated Annealing methods

9

•  : function to be minimized → ,  

•  : “inverse temperature” (← scaling of depth of potential)

F(x) R∞(U; X; Y ) = max
I,a

|X(U)
I − YI |a x ↔ U

β1 < β2 < ⋯ < βM

• Naive SA is a method approximately searching the global minimum;

MCMC 
with β1F(x)

MCMC 
with β2F(x)

MCMC 
with βMF(x)…

simulation time

MC with β1F(x)

MC with β2F(x)

MC with βMF(x)

⋮ …

• Replica-Exchange MC method (REMC) is an upgraded method of SA; [Swendsen, Wang, (’86)] 
[Geyer, (’91)]

MC with β1F(x)

MC with β2F(x)

MC with βMF(x)

⋮

simulation time
β1F(x)

β2F(x)

βMF(x)

⋮

β

xi

β1F(x)

β2F(x)

βMF(x)

⋮

xi

 & sim. timeβ

Simulations of different  simultaneously (more accurate but expensive)β

[Kirkpatrick, Gelatt, Vecchi, (’83)]
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Extension of replica actions
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Rp(U; X; Y ) = ∑
I,a

|X(U)
I − YI |

p
a

1/p

A “regularization” of the function aiming to escape from wrong convergence

R∞(U; X; Y ) = max
I,a

|X(U)
I − YI |a

original problem new problem

: -distanceL∞ : -distanceLp

[Hanada, Kanno, Matsuura, HW, in progress]

• Different pot. structure among replicas  
→ many minimizing path 

• Less local minima for smaller  

∵)      

      : gauge inv.

p

R2(X(U), YI) = min
U

tr(X(U)
I − YI)2 = tr(X(U)

I − YI)2

β

xi

β1R2(x)

β2R3(x)

βMRM+1(x)

⋮

→ Expecting a gain of efficiency
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Extended Replica-Exchange SA

11

eRESA = Annealing of REMC with small replicas w/ extended replica action 

[Hanada, Kanno, Matsuura, HW, in progress]

simulation time

small eREMC

β1

βh

β2

βh+1
βM−h

βM

…

Accurate 
Expensive

Approximative 
Cheap

eRESA

Very roughly,

(e)REMCSA

We mainly employed this 
due to resource limitation.
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• Numerical results
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Prep.: Mock-data analysis

13

Demonstration: one  matrix in which we know the answer4 × 4

preliminary
standard REMC
extended REMC

MC time (iteration)

(#replica = 500, (threshold) = 1.025)

→ Minimization by eREMC, eRESA tends faster than standard ones.
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Example: Fuzzy sphere matrix model
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S(XI, ψ) = Ntr (− 1
4 [XI, XJ]2 + 2iμ

3 ϵIJK XI XJ XK + 1
2 ψ̄σ I[XI, ψ] + μψ̄ ψ)

Classical minima : Fuzzy sphere solution

XFS
I = μJI, [JI, JJ] = iϵIJKJK

 : -dim. irrep. of  
     SU(2) generator
JI N

R∞(U; X; XFS
I ) = max

I,a
|X(U)

I − XFS
I |a

Minimization of the distance w.r.t.  by eRESAU

[Iso, Kimura, Tanaka, Wakatsuki, (’01)]

N → ∞ S2

R2
FS = 1

N
tr X2

I = μ2

4 (N2 − 1)

: ’s are not simultaneously diagonalizable!XI

A supersymmetric toy model; ( )I, J, K = 1,2,3

Rp(U; X; XFS
I ) = ∑

I,a
|X(U)

I − XFS
I |a

p
1/p

(  : Pauli matrices)σI

(Under investigation for varying the ansatz of slow mode )YI
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Numerical results
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⟨R∞⟩

[⬅  Left]   Large N extrapolation shows an  scaling and convergence to zero. 

[Right ➡ ] Histogram of  shows that width scales by .

1/ N

R∞(XI, XFS
I ) N−1

preliminary

tr(XI − YI)2 = ∑
a

XI − YI a

2 ∼ O(N ), R∞ ∼ max
a

XI − YI a
∼ O(N−1/2)

1/ N
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→ Consistent with the theoretical prediction!

(at )μ = 10
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Summary

17

R∞(X; Y ) := min
U (max

a
(U†XU − Y)a )  :  hermitian mat.   

 : unitary mat.
X, Y N × N

U

( )XI = ⋱

YI,a

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider 
their extensions (extension of the replica action, and RE Simulated Annealing)

To read off geometric information in string theory via gauge/gravity duality, 
we have to extract the slow mode from matrices (c.f. center of wave packet).

To determine the slow mode in a high-dim space, we compute a quantity

ℝ(#matrix dof)

• Mock-data analysis 
• Fuzzy sphere three-matrix model (+ One-matrix model w/ double-well pot.)
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Future directions
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• Investigation of (0+1)d models both in path-integral & Hamiltonian formalisms. 

• Quantum computations may be powerful to determine the quantum state 
of wave packet corresponding to emergent geometry. 

• Necessity to clarify how to find a better ansatz for  
← Essential for analyzing (0+1)d models (e.g. BFSS-type model) and so on.

YI

• Further understanding, generalization, application of the extended REMCs  

• Combination of RE method with Machine Learning?

• More detailed analysis for (bosonic) fuzzy-sphere three-matrix model 

• Interesting in small  region where FS seems obscure 
                 in bosonic model exhibiting phase transition btw large/small  

μ

μ

[Banks, Fischler, Shenker, Susskind, (’96)] 
[Berenstein, Maldacena, Nastase, (’02)]


